MMBT2907A

PNP SMALL SIGNAL SURFACE MOUNT TRANSISTOR

Please click here to visit our online spice models database.

Mechanical Data

- Case: SOT-23
- Case Material: Molded Plastic, "Green" Molding Compound, Note 3. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020D
- Terminal Connections: See Diagram
- Terminals: Matte Tin Finish annealed over Alloy 42 leadframe (Lead Free Plating) Solderable per MIL-STD-202, Method 208
- Marking Information: See Page 4
- Ordering Information: See Page 4
- Weight: 0.008 grams (approximate)

Top View

Device Schematic

Maximum Ratings $@ T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Symbol	Value	
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	-60	
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	-60	V
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	-5.0	V
Collector Current - Continuous (Note 1)	I_{C}	-600	V
Peak Collector Current	I_{CM}	-800	mA

Thermal Characteristics

Characteristic	Symbol	Value	
Power Dissipation (Note 1)	P_{D}	300	Unit
Thermal Resistance, Junction to Ambient (Note 1)	$\mathrm{R}_{\theta \mathrm{JA}}$	mW	
Operating and Storage and Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	417	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes: 1. Device mounted on FR-4 PCB, 1 inch $\times 0.85$ inch $\times 0.062$ inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
2. No purposefully added lead. Halogen and Antimony Free
3. Product manufactured with Data Code V9 (week 33, 2008) and newer are built with Green Molding Compound. Product manufactured prior to Date Code V9 are built with Non-Green Molding Compound and may contain Halogens or $\mathrm{Sb}_{2} \mathrm{O}_{3}$ Fire Retardants.

Electrical Characteristics $@ T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Symbol	Min	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 4)					
Collector-Base Breakdown Voltage	$\mathrm{V}_{\text {(BR)CBO }}$	-60	-	V	$\mathrm{IC}_{\mathrm{C}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$
Collector-Emitter Breakdown Voltage	$\mathrm{V}_{\text {(BR)CEO }}$	-60	-	V	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$
Emitter-Base Breakdown Voltage	$\mathrm{V}_{(\mathrm{BR})}$ EBO	-5.0	-	V	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$
Collector Cutoff Current	Ісво	-	-10	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{C B}=-50 \mathrm{~V}, I_{E}=0 \\ & V_{C B}=-50 \mathrm{~V}, I_{E}=0, T_{A}=125^{\circ} \mathrm{C} \end{aligned}$
Collector Cutoff Current	$\mathrm{I}_{\text {CEX }}$	-	-50	nA	$\mathrm{V}_{\text {CE }}=-30 \mathrm{~V}, \mathrm{~V}_{\text {EB }(\text { OFF })}=-0.5 \mathrm{~V}$
Base Cutoff Current	IBL	-	-50	nA	$\mathrm{V}_{\text {CE }}=-30 \mathrm{~V}, \mathrm{~V}_{\text {EB }(\mathrm{OFF})}=-0.5 \mathrm{~V}$
ON CHARACTERISTICS (Note 4)					
DC Current Gain	$h_{\text {fe }}$	$\begin{gathered} 75 \\ 100 \\ 100 \\ 100 \\ 50 \end{gathered}$	$\begin{aligned} & - \\ & \overline{-} \\ & \overline{-} \end{aligned}$	-	$\begin{aligned} & \text { IC }=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~V} \\ & \mathrm{IC}=-1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~V} \\ & \mathrm{IC}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~V} \\ & \mathrm{IC}=-150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~V} \\ & \mathrm{IC}_{\mathrm{C}}=-500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~V} \end{aligned}$
Collector-Emitter Saturation Voltage	$V_{\text {CE(SAT) }}$	-	$\begin{aligned} & \hline-0.4 \\ & -1.6 \\ & \hline \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA} \end{aligned}$
Base-Emitter Saturation Voltage	$V_{\text {be(SAT) }}$	-	$\begin{aligned} & \hline-1.3 \\ & -2.6 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA} \end{aligned}$
SMALL SIGNAL CHARACTERISTICS					
Output Capacitance	$\mathrm{C}_{\text {obo }}$	-	8.0	pF	$\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{I}_{\mathrm{E}}=0$
Input Capacitance	$\mathrm{C}_{\text {ibo }}$	-	30	pF	$\mathrm{V}_{\text {EB }}=-2.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{I}_{\mathrm{C}}=0$
Current Gain-Bandwidth Product	f_{T}	200	-	MHz	$\begin{aligned} & V_{\text {CE }}=-20 \mathrm{~V}, \mathrm{IC}=-50 \mathrm{~mA}, \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$
SWITCHING CHARACTERISTICS					
Turn-On Time	$\mathrm{t}_{\text {off }}$	-	45	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=-30 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=-150 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{B} 1}=-15 \mathrm{~mA} \end{aligned}$
Delay Time	$\mathrm{t}_{\text {d }}$	-	10	ns	
Rise Time	t_{r}	-	40	ns	
Turn-Off Time	$\mathrm{t}_{\text {off }}$	-	100	ns	$\begin{aligned} & -V_{\mathrm{CC}}=-6.0 \mathrm{~V}, I_{\mathrm{C}}=-150 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{B} 1}=I_{\mathrm{B} 2}=-15 \mathrm{~mA} \end{aligned}$
Storage Time	$\mathrm{t}_{\text {s }}$	-	80	ns	
Fall Time	t_{f}	-	30	ns	

Notes: 4. Short duration pulse test used to minimize self-heating effect.

Fig. 1 Power Dissipation vs. Ambient Temperature (Note 1)

Fig. 2 Typical DC Current Gain vs. Collector Current

Fig. 3 Typical Collector-Emitter Saturation Voltage vs. Collector Current

Fig. 5 Typical Capacitance Characteristics

Fig. 7 Typical Collector Saturation Region

Fig. 4 Typical Base-Emitter Saturation Voltage vs. Collector Current

I_{C}, COLLECTOR CURRENT (mA)
Fig. 6 Typical Gain-Bandwidth Product vs. Collector Current

MMBT2907A

Ordering Information
(Note 5)

Part Number	Case	Packaging
MMBT2907A-7-F	SOT-23	3000/Tape \& Reel

Notes: 5. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

Package Outline Dimensions

Suggested Pad Layout

Dimensions	Value (in $\mathbf{~ m m}$)
\mathbf{Z}	2.9
\mathbf{X}	0.8
\mathbf{Y}	0.9
\mathbf{C}	2.0
\mathbf{E}	1.35

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT
Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

